Intel Archive
The modular PC: Intel’s new Element brings Project Christine to life
Intel launches Comet Lake-U and Comet Lake-Y: up to 6 cores for thin and light laptops
Examining Intel’s Ice Lake processors: taking a bite of the Sunny Cove microarchitecture
It’s time to pay attention to Intel’s Clear Linux OS project
Intel says it will exit the 5G modem market
Intel’s new assault on the data center: 56-core Xeons, 10nm FPGAs, 100gig Ethernet
Intel to stop developing Compute Cards
Intel to discontinue Itanium 9700 ‘Kittson’ processor, the last of the Itaniums
Intel Core i9-9990XE: up to 5.0 GHz, auction only
The future of Core, Intel GPUs, 10nm, and Hybrid x86
It has been hard to miss the fact that Intel has been vacuuming up a lot of industry talent, which brings with them a lot of experience. Renduchintala, Koduri, Keller, Hook, and Carvill, are just to name a few. This new crew has decided to break Intel out of its shell for the first time in a while, holding the first in a new tradition of Intel Architecture Days. Through the five hours of presentations, Intel lifted the lid on the CPU core roadmaps through 2021, the next generation of integrated graphics, the future of Intel's graphics business, new chips built on 3D packaging technologies, and even parts of the microarchitecture for the 2019 consumer processors. In other words, it's many of the things we've been missing out on for years. And now that Intel is once again holding these kinds of disclosures, there's a lot to dig in to.
AnandTech's coverage of the event.
The Intel Core i9-9980XE review: refresh until it hertz
AnandTech has published its comprehensive benchmarks and tests of the Intel Core i9-9980XE, and while this $2000 processor is unlikely to grace any of our computers, the article has some choice words for Intel. The problem with the 9980XE is that it's basically a 7980XE with slightly higher frequencies partly because Intel switched the TIM from paste to solder, and the numbers confirm this - the performance improvement isn't all that great.
And this is a big problem for Intel.
It all boils down to 'more of the same, but slightly better'
While Intel is having another crack at Skylake, its competition is trying to innovate, not only by trying new designs that may or may not work, but they are already showcasing the next generation several months in advance with both process node and microarchitectural changes. As much as Intel prides itself on its technological prowess, and has done well this decade, there’s something stuck in the pipe. At a time when Intel needs evolution, it is stuck doing refresh iterations.
Intel needs a breakthrough, because it can't keep sucking blood from the 14nm stone forever.
Why Intel processors draw more power than expected
One of the recent topics permeating through the custom PC space recently has been about power draw. Intel's latest eight-core processors are still rated at a TDP of 95W, and yet users are seeing power consumption north of 150-180W, which doesn't make much sense. In this guide, we want to give you a proper understanding why this is the case, and why it gives us reviewers such a headache.
A detailed look at this nebulous topic by AnandTech.
Intel Xeon E six-core review
Despite having officially launched back in July, Intel's Xeon E desktop platform has yet to see the light of day in systems casually available to users or small businesses. This should change today, with the official embargo lift for reviews on the parts, as well as the announcement today that SGX-enabled versions are coming for Server use. The Xeon E platform is the replacement for what used to be called the E3-1200 family, using Intel's new nomenclature, and these parts are based on Intel's Coffee Lake (not Coffee Lake Refresh) microarchitecture. We managed to get a few processors in to test, and today we'll start by examining most of the six-core family.
Intel virtualisation: how VT-x, KVM and QEMU work together
VT-x is name of CPU virtualisation technology by Intel. KVM is component of Linux kernel which makes use of VT-x. And QEMU is a user-space application which allows users to create virtual machines. QEMU makes use of KVM to achieve efficient virtualisation. In this article we will talk about how these three technologies work together. Don't expect an in-depth exposition about all aspects here, although in future, I might follow this up with more focused posts about some specific parts.
Intel announces 9th Gen Core processors
Among many of Intel's announcements today, a key one for a lot of users will be the launch of Intel's 9th Generation Core desktop processors, offering up to 8-cores on Intel's mainstream consumer platform. These processors are drop-in compatible with current Coffee Lake and Z370 platforms, but are accompanied by a new Z390 chipset and associated motherboards as well. The highlights from this launch is the 8-core Core i9 parts, which include a 5.0 GHz turbo Core i9-9900K, rated at a 95W TDP.
Biggest news for me is that Intel unveiled that these new processors will switch from a cheap paste as thermal interface material between the die and the IHS to a layer of solder. This should greatly aid in cooling.
Intel launches Whiskey Lake-U and Amber Lake-Y
Earlier this year Intel announced that it would be introducing two new families to its low power notebook range: Whiskey Lake for new 15W (U-Series) processors, and Amber Lake for new sub-5W (Y-Series) processors. These new parts are at the core the same as the current 8th generation Kaby Lake Refresh parts, but they have been equipped with newer chipsets. With this announcement, we are expecting to see a large number of OEMs with new devices on display at the IFA trade show this week in Berlin.
Especially midrange thin laptops will benefit from these new processors - think a new MacBook Air, new Surface Pros, and so on.
Inside the die of Intel’s 8087 coprocessor chip
Looking inside the Intel 8087, an early floating point chip, I noticed an interesting feature on the die: the substrate bias generation circuit. In this articleI explain how this circuit is implemented, using analog and digital circuitry to create a negative voltage.
Intel introduced the 8087 chip in 1980 to improve floating-point performance on 8086/8088 computers such as the original IBM PC. Since early microprocessors were designed to operate on integers, arithmetic on floating point numbers was slow, and transcendental operations such as trig or logarithms were even worse. But the 8087 co-processor greatly improved floating point speed, up to 100 times faster. The 8087's architecture became part of later Intel processors, and the 8087's instructions are still a part of today's x86 desktop computers.
A detailed and very technical article.
Intel says not to expect mainstream 10nm chips until 2H19
Intel has set a concrete deadline for when it'll finally have processors built on a 10nm process in the mainstream market: holiday season 2019.
While the company's 14nm manufacturing process is working well, with multiple revisions to improve performance or reduce power consumption, Intel has struggled to develop an effective 10nm process. Originally mass production was planned for as far back as 2015. In April, the company revised that to some time in 2019. The latest announcement is the most specific yet: PC systems with 10nm processors will be in the holiday season, with Xeon parts for servers following soon after. This puts mainstream, mass production still a year away.
A seemingly endless string of delays. Things are not looking good for Intel.
Intel CEO resigns over past relationship with employee
Intel Corporation today announced the resignation of Brian Krzanich as CEO and a member of the board of directors. The board has named Chief Financial Officer Robert Swan interim chief executive officer, effective immediately.
Intel was recently informed that Mr. Krzanich had a past consensual relationship with an Intel employee. An ongoing investigation by internal and external counsel has confirmed a violation of Intel's non-fraternization policy, which applies to all managers. Given the expectation that all employees will respect Intel's values and adhere to the company's code of conduct, the board has accepted Mr. Krzanich's resignation.
Companies have these rules for a reason - and it's good to see the consequences of violating them apply to the CEO as well. That being said, I doubt Krzanich will be living in a cardboard box any time soon.