Keep OSNews alive by becoming a Patreon, by donating through Ko-Fi, or by buying merch!

Intel Archive

Intel’s new Atom microarchitecture: the Tremont core in Lakefield

While Intel has been discussing a lot about its mainstream Core microarchitecture, it can become easy to forget that its lower power Atom designs are still prevalent in many commercial verticals. Last year at Intel’s Architecture Summit, the company unveiled an extended roadmap showing the next three generations of Atom following Goldmont Plus: Tremont, Gracemont, and ‘Future Mont’. Tremont is set to be launched this year, coming first in a low powered hybrid x86 design called Lakefield for notebooks, and using a new stacking technology called Foveros built on 10+ nm. At the Linley Processor Conference today, Intel unveiled more about the microarchitecture behind Tremont. AnandTech takes a look at Intel’s upcoming Atom processors, the processor family mostly reserved for lower-end devices and specific markets such as embedded platforms and even some smartphones. Most of us, however, will remember Atom processors best from the netbook craze, where they enabled small, cheap Windows and Linux laptops to be sold in droves.

The modular PC: Intel’s new Element brings Project Christine to life

Way back at CES 2014, Razer’s CEO introduced a revolutionary concept design for a PC that had one main backplane and users could insert a CPU, GPU, power supply, storage, and anything else in a modular fashion. Fast forward to 2020, and Intel is aiming to make this idea a reality. Today at a fairly low-key event in London, Intel’s Ed Barkhuysen showcased a new product, known simply as an ‘Element’ – a CPU/DRAM/Storage on a dual-slot PCIe card, with Thunderbolt, Ethernet, Wi-Fi, and USB, designed to slot into a backplane with multiple PCIe slots, and paired with GPUs or other accelerators. Behold, Christine is real, and it’s coming soon. Anything to compete with the default ATX design of a PC is welcome, and this looks incredibly interesting.

Intel launches Comet Lake-U and Comet Lake-Y: up to 6 cores for thin and light laptops

Overall, the launch of Comet Lake comes at a tricky time for Intel. The company is still trying to right itself from the fumbled development of its 10nm process node. While Intel finally has 10nm production increasingly back on track, the company is not yet in a position to completely shift its production of leading-generation processors to 10nm. As a result, Intel’s low-power processors for this generation are going to be a mix of both 14nm parts based on their venerable Skylake CPU architecture, as well as 10nm Ice Lake parts incorporating Intel’s new Sunny Cove CPU architecture, with the 14nm Comet Lake parts filling in the gaps that Ice Lake alone can’t meet. Another year, another Skylake spec bump. Intel sure is doing great.

Examining Intel’s Ice Lake processors: taking a bite of the Sunny Cove microarchitecture

Intel has been building up this year to its eventual release of its first widely available consumer 10nm Core processor, codenamed “Ice Lake”. The new SoC has an improved CPU core, a lot more die area dedicated to graphics, and is designed to be found in premium notebooks from major partners by the end of 2019, just in time for Christmas. With the new CPU core, Sunny Cove, Intel is promoting a clock-for-clock 18% performance improvement over the original Skylake design, and its Gen11 graphics is the first 1 teraFLOP single SoC graphics design. Intel spent some time with us to talk about what’s new in Ice Lake, as well as the product’s direction.

It’s time to pay attention to Intel’s Clear Linux OS project

Intel’s Clear Linux Project has been on my radar for months, mainly because of its sheer dominance over traditional Linux distributions — and often Windows — when it comes to performance. From time to time I check in on the latest Phoronix benchmarks and think to myself “I really need to install that.” Up until recently though, the installer for Clear Linux was anything but intuitive for the average user. It also looked considerably dated. Version 2.0 gives the installer a complete overhaul. Aside from the fact it runs Gnome – which is not something I’d want to use – the main issue I have with this project is that it’s from Intel. The processor giant has had many Linux projects in the past, but it often just abandons them or doesn’t really know what to do with them.

Intel says it will exit the 5G modem market

From The Verge: Intel this evening said it has decided to leave the 5G mobile modem market to focus its efforts more on 4G and 5G modems for PCs, smart home devices, and its broader 5G infrastructure business. The announcement comes just hours after Apple and Qualcomm struck a surprise settlement in the two companies’ ongoing patent infringement and royalties dispute related to Apple’s use of Qualcomm modems in the iPhone. It’s likely Intel’s decision here was what prompted Apple and Qualcomm’s decision to settle just as lawyers were presenting opening arguments at the latest courtroom trial that began just yesterday in Southern California. I love it when things make sense.

Intel’s new assault on the data center: 56-core Xeons, 10nm FPGAs, 100gig Ethernet

Intel today launched a barrage of new products for the data center, tackling almost every enterprise workload out there. The company’s diverse range of products highlights how today’s data center is more than just processors, with network controllers, customizable FPGAs, and edge device processors all part of the offering. The star of the show is the new Cascade Lake Xeons. These were first announced last November, and at the time a dual-die chip with 48 cores, 96 threads, and 12 DDR4 2933 memory channels was going to be the top spec part. But Intel has gone even further than initially planned with the new Xeon Platinum 9200 range: the top-spec part, the Platinum 9282, pairs two 28 core dies for a total of 56 cores and 112 threads. It has a base frequency of 2.6GHz, a 3.8GHz turbo, 77MB of level 3 cache, 40 lanes of PCIe 3.0 expansion, and a 400W power draw. AnandTech has more information on these technologies, which few of us will ever get to work with.

Intel to stop developing Compute Cards

Intel will not develop new Compute Cards, the company has confirmed to Tom’s Hardware. Compute Cards were Intel’s vision of modular computing that would allow customers to continually update point of sale systems, all-in-one desktops, laptops and other devices. Pull out one card, replace it with another, and you have a new CPU, plus RAM and storage. “We continue to believe modular computing is a market where there are many opportunities for innovation,” an Intel spokesperson told Tom’s Hardware. “However, as we look at the best way to address this opportunity, we’ve made the decision that we will not develop new Compute Card products moving forward. We will continue to sell and support the current Compute Card products through 2019 to ensure our customers receive the support they need with their current solutions, and we are thankful for their partnership on this change.” I’ve always been fascinated by the Compute Card’s concept, but it never seemed to receive much support from partners, stores, or even Intel itself. I’m not surprised they’re cancelling the product line.

Intel to discontinue Itanium 9700 ‘Kittson’ processor, the last of the Itaniums

Intel on Thursday notified its partners and customers that it would be discontinuing its Itanium 9700-series codenamed Kittson processors, the last Itanium chips on the market. Under their product discontinuance plan, Intel will cease shipments of Itanium CPUs in mid-2021, or a bit over two years from now. The impact to hardware vendors should be minimal – at this point HP Enterprise is the only company still buying the chips – but it nonetheless marks the end of an era for Intel, and their interesting experiment into a non-x86 VLIW-style architecture. Itanium has a long and troubled history, but it’s always been something that I’ve wanted to experiment and play with. Maybe the definitive discontinuation of the platform will inject some more stock of machines into eBay.

Intel Core i9-9990XE: up to 5.0 GHz, auction only

AnandTech has seen documents and supporting information from multiple sources that show that Intel is planning to release a new high-end desktop processor, the Core i9-9990XE. These documents show that the processors will not be sold at retail; rather they will only be sold to system integrators, and then only through a closed online auction.  This new processor will be the highest numbered processor in Intel’s high-end desktop line. The current top processor is the i9-9980XE, an 18 core part with a base frequency of 3.5 GHz and a turbo frequency of 4.0 GHz. The i9-9990XE, on the other hand, is not simply the 9980XE with an increase in frequency. The Core i9-9990XE will be a 14 core processor, but with a base frequency of 4.0 GHz and a turbo frequency of 5.0 GHz. This makes it a super-binned 9940X. This probably means this is very much a low-yield chip Intel can’t make enough of to sell at retail.

The future of Core, Intel GPUs, 10nm, and Hybrid x86

It has been hard to miss the fact that Intel has been vacuuming up a lot of industry talent, which brings with them a lot of experience. Renduchintala, Koduri, Keller, Hook, and Carvill, are just to name a few. This new crew has decided to break Intel out of its shell for the first time in a while, holding the first in a new tradition of Intel Architecture Days. Through the five hours of presentations, Intel lifted the lid on the CPU core roadmaps through 2021, the next generation of integrated graphics, the future of Intel's graphics business, new chips built on 3D packaging technologies, and even parts of the microarchitecture for the 2019 consumer processors. In other words, it's many of the things we've been missing out on for years. And now that Intel is once again holding these kinds of disclosures, there's a lot to dig in to.

AnandTech's coverage of the event.

The Intel Core i9-9980XE review: refresh until it hertz

AnandTech has published its comprehensive benchmarks and tests of the Intel Core i9-9980XE, and while this $2000 processor is unlikely to grace any of our computers, the article has some choice words for Intel. The problem with the 9980XE is that it's basically a 7980XE with slightly higher frequencies partly because Intel switched the TIM from paste to solder, and the numbers confirm this - the performance improvement isn't all that great.

And this is a big problem for Intel.

It all boils down to 'more of the same, but slightly better'

While Intel is having another crack at Skylake, its competition is trying to innovate, not only by trying new designs that may or may not work, but they are already showcasing the next generation several months in advance with both process node and microarchitectural changes. As much as Intel prides itself on its technological prowess, and has done well this decade, there’s something stuck in the pipe. At a time when Intel needs evolution, it is stuck doing refresh iterations.

Intel needs a breakthrough, because it can't keep sucking blood from the 14nm stone forever.

Why Intel processors draw more power than expected

One of the recent topics permeating through the custom PC space recently has been about power draw. Intel's latest eight-core processors are still rated at a TDP of 95W, and yet users are seeing power consumption north of 150-180W, which doesn't make much sense. In this guide, we want to give you a proper understanding why this is the case, and why it gives us reviewers such a headache.

A detailed look at this nebulous topic by AnandTech.

Intel Xeon E six-core review

Despite having officially launched back in July, Intel's Xeon E desktop platform has yet to see the light of day in systems casually available to users or small businesses. This should change today, with the official embargo lift for reviews on the parts, as well as the announcement today that SGX-enabled versions are coming for Server use. The Xeon E platform is the replacement for what used to be called the E3-1200 family, using Intel's new nomenclature, and these parts are based on Intel's Coffee Lake (not Coffee Lake Refresh) microarchitecture. We managed to get a few processors in to test, and today we'll start by examining most of the six-core family.

Another great and detailed benchmark by AnandTech.

Intel virtualisation: how VT-x, KVM and QEMU work together

VT-x is name of CPU virtualisation technology by Intel. KVM is component of Linux kernel which makes use of VT-x. And QEMU is a user-space application which allows users to create virtual machines. QEMU makes use of KVM to achieve efficient virtualisation. In this article we will talk about how these three technologies work together. Don't expect an in-depth exposition about all aspects here, although in future, I might follow this up with more focused posts about some specific parts.

Intel announces 9th Gen Core processors

Among many of Intel's announcements today, a key one for a lot of users will be the launch of Intel's 9th Generation Core desktop processors, offering up to 8-cores on Intel's mainstream consumer platform. These processors are drop-in compatible with current Coffee Lake and Z370 platforms, but are accompanied by a new Z390 chipset and associated motherboards as well. The highlights from this launch is the 8-core Core i9 parts, which include a 5.0 GHz turbo Core i9-9900K, rated at a 95W TDP.

Biggest news for me is that Intel unveiled that these new processors will switch from a cheap paste as thermal interface material between the die and the IHS to a layer of solder. This should greatly aid in cooling.

Intel launches Whiskey Lake-U and Amber Lake-Y

Earlier this year Intel announced that it would be introducing two new families to its low power notebook range: Whiskey Lake for new 15W (U-Series) processors, and Amber Lake for new sub-5W (Y-Series) processors. These new parts are at the core the same as the current 8th generation Kaby Lake Refresh parts, but they have been equipped with newer chipsets. With this announcement, we are expecting to see a large number of OEMs with new devices on display at the IFA trade show this week in Berlin.

Especially midrange thin laptops will benefit from these new processors - think a new MacBook Air, new Surface Pros, and so on.

Inside the die of Intel’s 8087 coprocessor chip

Looking inside the Intel 8087, an early floating point chip, I noticed an interesting feature on the die: the substrate bias generation circuit. In this articleI explain how this circuit is implemented, using analog and digital circuitry to create a negative voltage.

Intel introduced the 8087 chip in 1980 to improve floating-point performance on 8086/8088 computers such as the original IBM PC. Since early microprocessors were designed to operate on integers, arithmetic on floating point numbers was slow, and transcendental operations such as trig or logarithms were even worse. But the 8087 co-processor greatly improved floating point speed, up to 100 times faster. The 8087's architecture became part of later Intel processors, and the 8087's instructions are still a part of today's x86 desktop computers.

A detailed and very technical article.

Intel says not to expect mainstream 10nm chips until 2H19

Intel has set a concrete deadline for when it'll finally have processors built on a 10nm process in the mainstream market: holiday season 2019.

While the company's 14nm manufacturing process is working well, with multiple revisions to improve performance or reduce power consumption, Intel has struggled to develop an effective 10nm process. Originally mass production was planned for as far back as 2015. In April, the company revised that to some time in 2019. The latest announcement is the most specific yet: PC systems with 10nm processors will be in the holiday season, with Xeon parts for servers following soon after. This puts mainstream, mass production still a year away.

A seemingly endless string of delays. Things are not looking good for Intel.

Intel CEO resigns over past relationship with employee

Intel Corporation today announced the resignation of Brian Krzanich as CEO and a member of the board of directors. The board has named Chief Financial Officer Robert Swan interim chief executive officer, effective immediately.

Intel was recently informed that Mr. Krzanich had a past consensual relationship with an Intel employee. An ongoing investigation by internal and external counsel has confirmed a violation of Intel's non-fraternization policy, which applies to all managers. Given the expectation that all employees will respect Intel's values and adhere to the company's code of conduct, the board has accepted Mr. Krzanich's resignation.

Companies have these rules for a reason - and it's good to see the consequences of violating them apply to the CEO as well. That being said, I doubt Krzanich will be living in a cardboard box any time soon.